Inference through message passing

- Recall that Markov nets factor over cliques,
 \[P(X) = P(X_1, \ldots, X_N) = \frac{1}{Z} \prod_{i=1}^{N} \phi_i(A_i) \]

 - We can assign each of these factors to one of the nodes in the clique tree,

 \[P(X) = \frac{1}{Z} \prod_j \phi_j(C_j) \]

Sum-product belief propagation

- Performs inference on a clique tree
- Instead of sending messages in one direction ("up" the tree), nodes send messages in all directions
 - Algorithm is almost exactly the same
 - Each node \(C_i \) sends a message to each of its neighbors \(C_j \)

 \[\delta_{i \to j}(S_{i,j}) = \sum_{C_j} \psi_i(C_i) \prod_{k \in X(i) \setminus \{j\}} \delta_{k \to j}(S_{k,i}) \]

 - Where \(S_{i,j} = C_i \cap C_j \)
 - Note that message sent to \(j \) does not use the message sent from \(j \), to avoid double counting

Constructing a clique tree

- One way to find a clique tree is to choose a variable elimination ordering and "run" VE
- Another approach is to use a graph construction
 - If necessary, moralize to produce an undirected graph \(G \).
 - Triangulate \(G \) to produce a chordal graph \(H \). (Would like one with minimum clique size, but this is NP hard.)
 - Find maximal cliques in \(H \). (Not NP hard for chordal graphs.)
 - Construct graph with nodes corresponding to max cliques in \(H \), edges weighted according to degree of overlap. i.e. edge between \(C_1 \) and \(C_2 \) has weight \(|C_1 \cap C_2| \)
 - Find a max spanning tree on this graph to yield a clique tree.

Announcements

- A2 (still) due Thursday
Examples

- Trees
- 2-trees
- Grids

Tree width

- The *tree width* of a graph G is equal to $m-1$, where m is the size of the largest clique in the triangulated (chordal) version of G.

- The worst-case running time of exact inference on a Markov or Bayes network is exponential in the tree width of the graph.